infer_subc/organelles/golgi
fixed_infer_golgi(in_img, cytoplasm_mask=None)
Procedure to infer golgi from linearly unmixed input.
Parameters
in_img: a 3d image containing all the channels Returns
golgi_object mask defined extent of golgi object
Source code in infer_subc/organelles/golgi.py
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 |
|
get_golgi(in_img, meta_dict, out_data_path)
load golgi if it exists, otherwise calculate and write to ome.tif file
Parameters
in_img
a 3d np.ndarray image of the inferred organelle (labels or boolean)
out_data_path
Path object where tiffs are written to
Returns
exported file name
Source code in infer_subc/organelles/golgi.py
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 |
|
infer_and_export_golgi(in_img, meta_dict, out_data_path)
infer golgi and write inferred golgi to ome.tif file
Parameters
in_img
a 3d np.ndarray image of the inferred organelle (labels or boolean)
out_data_path
Path object where tiffs are written to
Returns
exported file name
Source code in infer_subc/organelles/golgi.py
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 |
|
infer_golgi(in_img, median_sz, gauss_sig, mo_method, mo_adjust, mo_cutoff_size, min_thickness, thin, dot_scale, dot_cut, small_obj_w)
Procedure to infer golgi from linearly unmixed input.
Parameters
in_img:
a 3d image containing all the channels
median_sz:
width of median filter for signal
mo_method:
which method to use for calculating global threshold. Options include:
"triangle" (or "tri"), "median" (or "med"), and "ave_tri_med" (or "ave").
"ave" refers the average of "triangle" threshold and "mean" threshold.
mo_adjust:
Masked Object threshold local_adjust
mo_cutoff_size:
Masked Object threshold size_min
min_thinkness:
Half of the minimum width you want to keep from being thinned.
For example, when the object width is smaller than 4, you don't
want to make this part even thinner (may break the thin object
and alter the topology), you can set this value as 2.
thin:
the amount to thin (has to be an positive integer). The number of
pixels to be removed from outter boundary towards center.
dot_scale:
scales (log_sigma) for dot filter (1,2, and 3)
dot_cut:
threshold for dot filter thresholds (1,2,and 3)
small_obj_w:
minimu object size cutoff for nuclei post-processing
Returns
golgi_object mask defined extent of golgi object
Source code in infer_subc/organelles/golgi.py
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 |
|